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Introduction

• This presentation covers models for nonideal 
reactors with a focus on residence time distribution 
(RTD) and reactor flow behavior.



Topics to be Addressed

• - Residence Time Distribution (RTD)

• - Nonideal Flow Patterns

• - Models for Mixing

• - Calculation of Exit Conversion

• - Reactor Performance Assessment



Objectives

• - Understand the principles of nonideal flow in 
reactors

• - Learn how to use RTD for analyzing reactor 
performance

• - Apply mathematical models for mixing and 
conversion calculation

• - Compare different reactor modeling approaches



Some Guidelines for Developing Models

• The overall goal is to use the following equation
• RTD Data + Model + Kinetics = Predictions

• The model must be mathematically tractable
• The model must realistically describe the characteristics of the non-ideal reactor
• The model should not have more than two adjustable parameters



A PROCEDURE FOR CHOOSING A MODEL TO PREDICT 
THE OUTLET CONCENTRATION AND CONVERSION

1. Look at the reactor
A. Where are the inlet and outlet streams to and from the reactors? (Is by-passing a 

possibility?)
B. Look at the mixing system. How many impellers are there? (Could there be multiple mixing 

zones in the reactor?)
C. Look at the configuration. (Is internal recirculation possible? Is the packing of the catalyst 

particles loose so channeling could occur?)

2. Look at the tracer data
A. Plot the E(t) and F(t) curves.
B. Plot and analyze the shapes of the E(Θ) and F(Θ) curves. Is the shape of the curve such that 

the curve or parts of the curve can be fit by an ideal reactor model? Does the curve have a 
long tail suggesting a stagnant zone? Does the curve have an early spike indicating 
bypassing?

C. Calculate the mean residence time, tm, and variance, σ2. How does the tm determined 
from the RTD data compare with τ as measured with a yardstick and flow meter? How large 
is the variance; is it larger or smaller than τ2?

3. Choose a model or perhaps two or three models

4. Use the tracer data to determine the model parameters (e.g., n, Da, vb)

5. Use the CRE algorithm in Chapter 5. Calculate the exit concentrations and 
conversion for the model system you have selected



The RTD will be analyzed from a tracer pulse injected into the first reactor of three 
equally sized CSTRs in series

Generalizing this method to a series of n CSTRs gives the RTD for n CSTRs in series, E(t):

(18-4)

(18-5)



Tanks-in-series response to a pulse tracer input for different numbers of tanks

The number of tanks in series is

(18-11)

(18-8)

(18-9)



Calculating Conversion for the 
T-I-S Model

If the reaction is first order, we can use the equation below to calculate the conversion

(5-15)



Tanks-in-Series versus Segregation 
for a First-Order Reaction

 

The molar flow rate of tracer (FT ) by both convection and dispersion is: 

(18-12)

(14-14)



(18-14)



Flow, Reaction, and Dispersion

(14-16)

(18-15)

(18-16)

(18-17)



(18-18)

(18-19)



Boundary Conditions

Substituting for FA yields

At z = 0



Solving for the entering concentration CA(0–) = CA0

At the exit to the reaction section, the concentration is continuous, and there is no 
gradient in tracer concentration.

(18-20)

(18-21)



Open-Open System
For an open-open system, there is continuity of flux at the boundaries at

At z = 0

(18-22)



At z = L, we have continuity of concentration and

(18-23)



Back to the Solution for a Closed-
Closed System
We now shall solve the dispersion reaction balance for a first-order reaction

For the closed-closed system, the Danckwerts boundary conditions in dimensionless 
form are

(18-17)

(18-24)

(18-25)



At the end of the reactor, where λ = 1, the solution to the top equation is

(18-26)

(18-27)



Finding Da and the Peclet Number

There are three ways we can use to find Da and hence Per

1. Laminar flow with radial and axial molecular diffusion theory
2. Correlations from the literature for pipes and packed beds
3. Experimental tracer data



Dispersion in a Tubular Reactor with 
Laminar Flow

(18-28)



Where D* is the Aris-Taylor dispersion coefficient

That is, for laminar flow in a pipe

(18-31)

(18-32)

(18-33)



Correlations for Da





Dispersion in Packed Beds



Experimental Determination of Da

The Unsteady-State Tracer Balance

Solution for a Closed-Closed System

In dimensionless form, the Danckwerts boundary conditions are

(18-13)

(18-34)

(18-36)

(18-37)



(18-39)



For long tubes (Per > 100) in which the concentration gradient at ± ∞ will be zero, the 
solution to the Unsteady-State Tracer balance at the exit is11 

11W. Jost, Diffusion in Solids, Liquids and Gases (New York: Academic Press, 1960), pp. 17, 47.

The mean residence time for an open-open system is

(18-44)

(18-45)

(18-46)



We now consider two cases for which we can use previous equations to determine the 
system parameters:

Case 1. The space time τ is known. That is, V and v0 are measured independently. Here, 
we can determine the Peclet number by determining tm and σ2 from the 

concentration–time data and then use Equation (18-46) to calculate Per. We 
can also calculate tm and then use Equation (18-45) as a check, but this is usually 
less accurate.



Case 2. The space time τ is unknown. This situation arises when there are dead or 
stagnant pockets that exist in the reactor along with the dispersion effects. To analyze 
this situation, we first calculate mean residence time, tm, and the variance, σ2, from the 
data as in case 1. Then, we use Equation (18-45) to eliminate τ2 from Equation (18-
46) to arrive at 

We now can solve for the Peclet number in terms of our experimentally 
determined variables σ2 and tm . Knowing Per, we can solve Equation (18-45) for τ, 
and hence V.  The dead volume is the difference between the measured volume 
(i.e., with a yardstick) and the effective volume calculated from the RTD.

(18-47)



Two-Parameter Models—Modeling 
Real Reactors with Combinations of 
Ideal Reactors
Real CSTR Modeled Using Bypassing and Dead Space



Solving the Model System for CA and X

We shall calculate the conversion for this model for the first-order reaction

A ⎯⎯→ B

The bypass stream and effluent stream from the reaction volume are mixed at the 
junction point 2. From a balance on species A around this point

[In]=[Out]

[CA0vb + Casvs]=[CA (vb+vs)] (18-57)



Let α= Vs /V and β=vb/v0, then

For a first-order reaction, a mole balance on Vs gives

or, in terms of α and β

Substituting Equation (18-60) into (18-58) gives the effluent concentration of species 
A:

(18-58)

(18-59)

(18-60)

(18-61)



Using a Tracer to Determine the 
Model Parameters in a CSTR-with-
Dead-Space-and-Bypass Model



The conditions for the positive-step input are

At t < 0 , CT = 0
At t ≥ 0 , CT = CT0

A balance around junction point 2 gives

(18-63)

(18-62)



As before

Integrating Equation (18-62) and substituting in terms of α and β

Combining Equations (18-63) and (18-64), the effluent tracer concentration is

(18-64)

(18-65)

(18-66)



Other Models



Solving the Model System for CA 
and X
Let β represent that fraction of the total flow that is exchanged between reactors 1 and 
2; that is,

and let α represent that fraction of the total volume, V, occupied by the highly agitated 
region:

Then

The space time is



(18-67)

(18-68)

and



Using a Tracer to Determine the 
Model Parameters in a CSTR with an 
Exchange Volume
The problem now is to evaluate the parameters α and β using the RTD data. A mole 
balance on a tracer pulse injected at t = 0 for each of the tanks is 

Accumulation = Rate in - Rate out

Reactor 1:

Reactor 2:

(18-67)

(18-68)



(18-71)

(18-72)

where

(18-73)



Other Models of Nonideal 
Reactors Using CSTRs and PFRs

Combinations of ideal reactors used to model real tubular reactors: two ideal PFRs in 
parallel



Combinations of ideal reactors used to model real tubular reactors: ideal PFR and ideal 
CSTR in parallel



Summary
1. The models for predicting conversion from RTD data are:

A. Zero adjustable parameters
i. Segregation model
ii. Maximum mixedness model

B.  One adjustable parameter
i. Tanks-in-series model
ii. Dispersion model

C. Two adjustable parameters: real reactor modeled as combinations of ideal 
reactors

2. Tanks-in-series model: Use RTD data to estimate the number of tanks in series,

For a first-order reaction

(S18-1)



3. Dispersion model: For a first-order reaction, use the Danckwerts boundary 
  conditions

where

For a first-order reaction

(S18-2)

(S18-4)

(S18-3)

(S18-5)



4. Determine Da

(S18-6)

A For laminar flow, the dispersion coefficient is

B Correlations. Use Figures 18-10 through 18-12.
C Experiment in RTD analysis to find tm and σ2.
For a closed-closed system, use Equation (S18-6) to calculate Per from the RTD 
data

For an open-open system, use

(S18-7)

(18-47)



5. If a real reactor is modeled as a combination of ideal reactors, the model should 
 have at most two parameters



6. The RTD is used to extract model parameters.
7. Comparison of conversions for a PFR and CSTR with the zero-parameter and two-
  parameter models. Xseg symbolizes the conversion obtained from the 
  segregation model and Xmm is that from the maxi-mum  
 mixedness model for reaction orders greater than one.

Cautions: For rate laws with unusual concentration functionalities or for 
nonisothermal operation, these bounds may not be accurate for certain types of 
rate laws.



Summary

• This presentation discussed nonideal reactor flow, 
RTD, and the application of models for reactor 
design and performance assessment.
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